SURGERY ON LINKS AND DOUBLE BRANCHED COVERS OF §3

Jose M. Montesinos *

§0. Introduction

This paper deals with the relationship between 2-fold cyclic coverings
of S? branched over a link and closed, orientable 3-manifolds which are
obtained by doing surgery on a link in S3. In Theorem 1 it is shown that
every 2-fold cyclic branched covering of S? can be obtained by doing
surgery on a ‘‘strongly invertible’’ link, that is, a link L which has the
property that there is an orientation preserving involution of S¥ which
induces in each component of L an involution with two fixed points.
This result has some interesting consequences. Let K be a non-trivial
knot in S. Then Theorem 1, which is a constructive result, allows us to
obtain a link L in S such that the 2-fold covering space K of S°
branched over K can be obtained by doing surgery on L. Note that if L
has property P, then K cannot be a counterexample to Poincaré Con-
jecture because n(I:{) 4 1. Thus, every simply connected 2-fold cyclic
covering of s3 is S? iff every strongly invertible link has property P
(Corollary 1). As a second consequence of Theorem 1 we obtain a new
proof of a result established earlier by Viro [25] and also by Birman and
Hilden {2], that every closed, orientable 3-manifold of Heegaard genus
< 2 is a 2-fold cyclic branched covering of s3 (Corollary 2). In Corol-
lary 3 we will sharpen Theorem 1 showing that every 2-fold cyclic
branched covering of S can be obtained by doing surgery on a member
of a special family of strongly invertible links in s?,

Let L be a link such that there is an orientation preserving involu-
tion of S® with fixed points which induces an involution in each com-

ponent of L. Let M be a manifold that is obtained by doing surgery
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on L. We will see in Theorem 2 that M is a 2-fold cyclic covering of a
manifold that is obtained by doing surgery on a link in S®. As an applica-
tion of Theorem 2, it is shown that each manifold that is obtained by

doing surgery on a noninvertible pretzel knot or on the noninvertible

' is a 2-fold cyclic branched covering of a 2-fold ecyclic

‘“‘borromeans rings’
branched covering of S3. This yields some insight into the answer to a
question (Question 3) raised by Birman and Hilden.

The construction of the link L in Theorem 1 uses some knot modifi-
cations, defined by Wendt, which have the effect of changing K into the
trivial knot. Having in mind the purpose of finding, for a given knot K,
if n(f() is or is not trivial, we define in Section 3 some modifications of
a knot which generalize Wendt’s modifications. These modifications have
the effect of exhibiting K as a manifold which is obtained by doing
‘‘generalized surgery’’ on a link in S3 that is, removing n disjoint
solid tori from S° and replacing each torus with a special ‘‘graph-
manifold’’ which is bounded by a torus. The advantage of this is that if
a link has property P, then a counterexample to the Poincare conjecture
cannot be obtained by doing generalized surgery on it (Theorem 4).

This fact allows us, in Section 4, to establish that there cannot be a
counterexample to the Poincare Conjecture among the 2-fold cyclic cover-
ings of S which are branched over the knots of Kinoshita-Terasaka
(Section 4.1), or over Conway’s 1ll-crossing knot with Alexander poly-
nomial 1 (see Section 4.2), or over a special class of closed 3-braids
(see Section 4.3) first studied by Birman and Hilden.

In Section 5 it is established that graph-manifolds are in the Poincare

Category. This fact was used earlier in the paper, in the proof of

Theorem 4.
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§1. Statement of the problems

In this section we will discuss several interesting questions which
have been posed by Ralph Fox and others about the Poincare Conjecture
and related matters. These questions will serve to motivate the main re-
sults of this paper, which are given in Sections 2, 3, 4 and 5, below.

Let L denote a link in S*, and let L denote the 2-fold cyclic
covering space of S3 branched over L. Since 2-fold branched covering
spaces are in many ways especially simple (see (2,5, 6, 15,25,27]), one
might like to know how they are related to the class of all closed, orient-
able 3-manifolds? Ralph Fox has proved [6] that the 3-dimensional torus
S!xs!xs! is nota 2-fold cyclic branched cover of S3. However he has
given a conjecture [6, Conjecture A’] that implies an affirmative answer

to the question:

Question 1. Is every closed, orientable, simply-connected 3-manifold a

2-fold cyclic branched cover of §3?

This appears to be a deep and difficult question, and, as will be seen
below, it may even be equivalent to the Poincare Conjecture.

Now, in [17], [18] it was shown that there are Seifert fiber spaces,
different from S!xS!xS!, which are not 2-fold cyclic coverings of g%

However, all of them, are 2-fold cyclic coverings branched over a 3-sphere

with handles [18].

Question 2. Is every closed, orientable 3-manifold a 2-fold cyclic cover-

ing branched over a 3-sphere with handles?

If Question 2 has an affirmative answer, then each closed, orientable
3-manifold M with H,;(M) finite is a 2-fold cyclic covering of S3, be-
cause the lift to M of a non-separating 2-sphere (in S3 with g> 0
handles) must be a non-separating closed, orientable surface in M. Thus

I,(M) and H, (M) are infinite. Then, an affirmative answer to Question 2

implies an affirmative unswer to Question 1.



230 JOSE M. MONTESINOS

Note that a 3-sphere with g > 0 handles is a 2-fold cyclic branched
covering of 8, Joan S. Birman and Hugh M. Hilden have suggested that
it is reasonable to ask the following question, which looks like a weaker

question than Question 2.

Question 3. Is every closed, orientable 3-manifold a 2-fold branched
cyclic covering of a 2-fold branched cyclic covering of - - - of a 2-fold

branched cyclic covering of 32

It was observed by Birman and Hilden that if the answer to Question 3
is affirmative, then Fox’s argument [5] implies that if a counterexamplc
exist to the Poincare Conjecture, then there is also a counterexample
which is a 2-fold branched cyclic covering of 5

Thus an affirmative answer to one of the three above questions would
reduce the investigation of the Poincare Conjecture, to the case of 2-fold
cyclic coverings of s3.

Now, the trivial knot is the only knot which has S* as associated
2-fold cyclic covering branched over it [27]. On the other hand, if L has
more than one component, then Hl(I-J) £0 l6land if L = L,#L, isa
composite knot, then rr(I:) = n(ﬂl) * n(I:2) {15, Theorem V.5.3.1. Thus,

one is led to consider the following Conjecture (see [15, Conjecture 1.1.1.1:
CONJECTURE 1. If N is a non-trivial prime knot, then a(N) £ 1.

If one searches for a counterexample to Questions 2, 3, then one need
not consider Seifert fiber spaces or closed graph-manifolds (‘*‘Graphen-
mannigfaltigkeiten,’’ see [26]) because all of them are 2-fold cyclic
coverings of s3 with handles.! I suggest looking for M among the

. 2 . 3
closed, orientable 3-manifolds obtained by doing surgery on a knot in §7.

1 In [18] this was proved for Seifert manifolds and for graph-manifolds M
represented by a graph A(M). Of course, this can be extended to each closed
graph-manifold according to |26, Satz 6.3, p. 88| and [15, Teorema V.5.3.] and

|25, 3.10].
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Therefore, in this paper, we explore the relationship between 2-fold cyclic
coverings of S% branched over a link and closed, orientable 3-manifolds

which are obtained by doing surgery on a link in s3.

§2. Surgery on links and double branched covers of s3

Let L be alinkin S. L is called strongly-invertible if there is an
orientation-preserving involution of $ which induces in each component
of L an involution with two fixed points. Every strongly-invertible link
L is invertible, but I do not know if every invertible link is a strongly-

invertible link.

THEOREM 1. Let M be a closed, orientable 3-manifold that is obtained
by doing surgery on a strongly-invertible link L. of n components. Then
M is a 2-fold cyclic covering of S branched over a link of at most nvl
components. Conversely, every 2-fold cyclic branched covering of s3

can be obtained in this [ashion.

Proof of Theorem 1. Let S® be represented as Euclidean space with an
ideal point at infinity. It can be supposed without loss of generality [27],
that there is an axis E in S° such that the axial symmetry u with re-
spect to E induces in each component of L an involution with two
fixed points. For the sake of brevity, the first part of Theorem 1 will be
proved for a knot N in s3.

Let U(N) be a regular neighborhood of N such that u induces an
involution in U(N) (a typical case is illustrated in Figure la). Let V
be the solid torus, as represented in Figure 1b, and let u” be the sym-
metry with respect to the axis E’. There is a homeomorphism b of
JU(N) onto dV such that (u’ldV)y =y (uldU(N)).

Let ¢ now be a homeomorphism of dV onto JU(N). Then ¢ is
an autohomeomorphism of dV and it can be supposed (by composing b,

if necessary, with an isotopy) that
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VY(Wp) .

@) @lov) = (u’

Thus ¢’ 1aV) = b~ (W |IV) e = (ul JUNY) .

Then, the space M obtained by pasting V to SS-—U(N) by means
of ¢ 1is compatible with the involutions u and u’, and admits an

£ involution u”, induced by u

and u’. The orbit-space of
(S’—UM)) U V under u” can be
obtained by adjoining the orbit
space of V under u” (which is
a ball) to the orbit-space of
$* ~U(N) under u, whichis $®

minus a ball (see in Figure 1c a

fundamental set for the action of
u on U(N)). Then M is a

2-fold cyclic covering of SS,

branched over the image of
E~(ab+cd) + (AB+CD) (see
Figures 1a and 1b). This is a

link in S* which has, at most,

two components.

Fig. lc.

Conversely, suppose that M is a 2-fold cyclic covering of s3,
branched over a link L. We consider two ways to modify this link, by re-
moving certain solid balls from s? and sewing them back differently.
First, it is possible, by applying modifications of type W; (see Figure
2a), to change a given link L in S3 into a knot K in S5, Then, by

2 This result is contained implicitly in [3], and is proved in [2], [25] and [-18].

In 2] and [25] this result has been gencralized for orientable surfaces of genus
v 2. For ¢ ™2 this generalization is not true in general (sce [6] and l17]).
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applying further modifications of type W, (see Figure 2b), it is possible
to change the knot K into the trivial knot T (see [28]). Let n be the
minimal number of modifications of type W,, W, that are necessary in
order to change the given link L into the trivial knot T.

It may be supposed that these modifications are set up in the inner of
n disjointed balls Bl""’Bn of §3 (see Figure 2). Note that the
2-fold cyclic coverings of B; branched over B; M T are solid tori. Thus,
in order to build up L it is sufficient to do surgery along n solid tori
in T=S3.

Let é’i be the 2-fold cyclic covering of B;, branched over B, N T.

f -
Then U B; can be interpreted as a regular neighborhood of a strongly-
i1
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invertible link in §3. Thus, L can be obtained by doing surgery on a

strongly-invertible link in S3 which has, at most, n components. O

Recall that a link L in S3 has property P when it is not possible
to obtain a counterexample to the Poincare Conjecture by doing surgery

on it,

COROLLARY 1. Conjecture 1 is true iff every strongly inveriible link

has property P. D

As property P is known to be true for many links (1], {8], 23],
Corollary 1 implies that Conjecture 1 can be established for a large family
of knots. In Section 4 we will apply Theorem 1 in this way to establish
that there cannot be a counterexample to the Poincare Conjecture among
the 2-fold coverings of $% which are branched over the knots of Kinoshita-
Terasaka (see Section 4.1), or over Conway’s 11-crossing knot with
Alexander polynomial 1 (see Section 4.2), or over a special class of
closed 3-braids (see Section 4.3).

We now give a different application of Theorem 1. Let g> 1 be an
integer. Let L be a link in R3 = §3 (one point) made up of a disjoint
union of circles, each being one of the following: (i) a circle of radius
<1, centerat (2n4+ 1,0,0) where 0 < n< g, and lying in the x,z
plane, or (ii) a circle of radius < 1, center at (2n,0,0) where 1<n<g,
and lying in the X,y plane, or (iii) a circle of radius < 2, center at
(2n,2,0) where 1< n< g, and lying in a parallel plane P, tothe y,z
plane. We assume also that the annulus determinated by two concentric
components of L. must be cut by some other component in exactly one
point. Let CS‘.)g be the family of links defined in this way, for a given g.
It was proved by Lickorish [13] that every closed, orientable 3-manifold
of genus g may be obtained by doing surgery on a link in the class ‘Sig'
Let f.'g be the subfamily of gg consisting of those links whose com-

ponents in P have radius 2. Note that a link in g,g is strongly-

invertible.
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Since f’g = f.g for g < 2, then according to Theorem 1, we obtain
another proof of the following result by Viro {25| and Birman and Hilden {2]:

COROLLARY 2. Every closed, orientable 3-manifold of genus < 2 is a
2-fold cyclic branched covering of S°. O

COROLLARY 3. Each 2-fold cyclic covering branched over S° can be

obtained doing surgery on a link in f’g, for some g > 1.

Proof of Corollary 3. First, we recall the definition of a ‘“‘plat on 2m
strings.”’ If we represent $3 as R34 =, then the X,y plane separates
$% in two balls B, and B,, B; containing the positive part of axis z.
Let C be a collection of m circles in the x,z plane of radius 2 and
centers at points (1+5i,0,0), where 0<i<m-1. Let f be any
orientation-preserving autohomeomorphism of dB,; which keeps the set
chn aBl fixed as a set. Since f is isotopic to the identity map in JB;,
there is an autohomeomorphism F’:dB, x [0, 1] - 6131 x [0, 1] such that
F'(x,t) = (xt), F'(x,1)= (x,1) and F’(x,0)= (fx,0). Then F’ is extended
by the identity map outside dB; x [0,1] to an autohomeomorphism F of
B;. The subset L =F(CNB,;)U (CNB,), whichis a link in S°, is
called a plat on 2m strings (for further details, see [2]). It is a known
result (see, for instance, [2]) that every link type is represented by at least
one plat. Note that F(CN ((.9B1 x[0,1])) is a geometric braid on 2m strings
Thus a plat on 2m strings can be exhibited as a geometric braid on 2m
strings by joining the initial points in pairs, and also the terminal points
in pairs.

The proof of Corollary 3 may be illustrated by the following example
(the general case is left to the reader). Let us consider the plat on 8
strings of Figure 3a. It is possible to change L into the trivial knot by
removing ten solid balls Bi (i=1,---,10) from $3 and sewing them back
differently (see Figures 3a, 3b, 4a). Note that the 2-fold covering of B,

branched over B, NL or Bi N T are solid tori. It is clear that we can
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s
L

Fig. 3a.

194y, $h.
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obtain L by doing surgery on the link in “9’3 of Figure 4b. In general,
if L is aplaton 2m strings then L can be obtained by doing surgery

. . . 3
on a link in gm—l' ]

As a consequence of Corollary 3 we have:

COROLLARY 4. Conjecture 1 is equivalent to the Conjecture that each
member of ffg, g > 1, has property P.

To explore further the implications of Theorem 1, observe that if there
is a closed, orientable 3-manifold M which gives a negative answer to
Questions 2 or 3, it must be obtained by doing surgery on a link which is
not strongly invertible. This suggests that one study Questions 2 or 3
by studying the 3-manifolds obtained by doing surgery on a non-invertible

link.
Let L be a link in S° and let suppose that there is an orientation-

preserving involution u in Ss, with fixed points, which induces an in-
volution in each component of L. Let L” be the link consisting of those
components of L for which the number of fixed points of u is different

from two. Let p:S3 > 83 the 2-fold cyclic branched covering of g

defined by u.

THEOREM 2. Every manifold obtained by doing surgery on a link L 1is

a 2-fold cyclic covering branched over a manifold obtained by doing

surgery on p(L").

REMARK. Theorem 1 is a special case of Theorem 2.

. J. S. Birman has pointed out to me that it is interesting to note that the class
of 3-manifolds which are obtained by doing surgery on links in £ * are exactly
the class of 3-maniflolds which are ““2-symmetric’’ in the notation of [2]
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Proof of Theorem 2. For the sake of brevity, suppose that L has only
one component and that either u is without fixed points in L or leaves
each point of L fixed. Let U(L) be a regular neighborhood of L, such
that u induces in U(L) an involution. Let u” = uldU(L).

Let V be a solid torus (see Figure 5) whose core C is a circle in
the x,y plane with center 0 and radius one. Let z(resp. v) be the
involution of V induced by the symmetry with respect to axis
OZ (resp. C). There is a homeomorphism ¢ of JU(L) onto dV such
that zy =y u’. Let p= t,f’;—lP and m = g[;_lM be a pair of simple
oriented curves in dU(L) (see Figure 5).

We now paste V to $3 _ U(L) in the way that M is homologous to
am + 3p, where a and B are coprime integers. It is easy to see that
there is a homeomorphism ¢ of JdV onto JU(L) such that (M) ~am +
Bp and qS—ll,!f'_lzy//gb, that is ¢~ lu'eh, is equal to z if a is odd, or
is equal to v if a is even.

Let W be the space obtained by pasting g9 U(L) to V by ¢.
The map ¢ is compatible with the involutions u and z (or v, as the
case may be). Thus, there is an involution u” of W, the orbit-space of
which is obtained by adjoining the orbit-space of u (that is $3 minus a
solid torus) with the orbit-space of z (or v, as the case may be), which

is a solid torus. O

Z
M .
Y P e
R ™~
7/ N
/ \
]
c\ 0 Wy 4
\ AN - /.-/""’
\'\_ S R -
2t -

Fig. 5
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As an application of Theorem 2 consider the pretzel knot K(p, q, )
(see [24]). If any of the numbers p,q,r is even, it is clear that K(p,q,r)
is a strongly-invertible link. Thus, one obtains a 2-fold cyclic covering
branched over S3 by doing surgery on K(p,q,r). If the numbers p,q,r
are all odd, then there is an involution u of s which induces in the
knot K(p,q,r) an involution without fixed points. (A typical case is
illustrated in Figure 6a). Thus, every manifold that is obtained by doing
surgery on K(p,q,r) is a 2-fold cyclic covering branched over a manifold
that is obtained by doing surgery on the trivial knot p(K(p, q,r)), where
p is the covering defined by u (see Figure 6b). As the trivial knot is
strongly-invertible it follows that the manifold obtained by doing surgery

on K(p,q,r), (p,q,r odd), is a 2-fold cyclic covering of a 2-fold cyclic

xyX
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covering of S®. This confirms Question 3. Note that Trotter has shown
that K(p,q,r) is non-invertible if P,q,r are distinct odd integers, each
to greater than one. The author does not know whether the manifolds ob-
tained by doing surgery on these knots are also representable as 2-fold
cyclic branched covering of g,

As a second application, consider the manifold obtained by doing
surgery on the ‘‘borromeans rings,’”” B, illustrated in Figure 7. If we re-
move the solid tori U(L,), U(L,), U(L;) from S3 and sew them back in
such a way that the curves h1 , h2, h3 are identified with meridians, then
we obtain S! x §! x ! [12], which is not a 2-fold branched cyclic cover-
ing of S3 [6]. This shows that B is not a strongly invertible link. But
the axial symmetry with respect to axis E (see Figure 7) induces in each
component of B an involution. Then, by Theorem 2, every manifold that
is obtained by doing surgery on B is a 2-fold cyclic branched covering
of a manifold that is obtained by doing surgery on the trivial knot and this
confirms Question 3. For instance, S! x 8! x 8! is a 2-fold cyclic
branched covering of St % 52

It is interesting to note that not only is B non-invertible,4 but also
there is no orientation-preserving involution of $3 which induces an invo-
lution in each component of B and which keeps fixed exactly two points

of B.

4 To the author’s knowledge, this fact has not been established elsewhere in

the literature. To prove it, let F2 = {x,y/—-f be the group of the link formed by
the components Ly, L. The group F2 is a free group on two generators and the
element xyx_ly_l is represented by the loop h. If ¢ is an automorphism of
-1 -1 -1 -1

14‘2, then by [14, Theorem 3.9, p. 165], Dlxyx ly 1)=w(xyx y 1) w , where
w is a word in x,y which can be assumed to be reduced. Now, let us assume that
[3 is an invertible link, Then there is an automorphism q5 of F2 that carries x
to a conjugate of its inverse, carries y to a conjugate of its inverse and carries
xyx"ly_l to its inverse (compare l1—29]). The abelianizing homomorphism A maps
I, onio the abelian group Z®Z, and ¢ induces an automorphism ¢  of Z®Z.

It is easy to see that £ is equal to the determinant of the matrix of (]5' with re-
. -1 -1, -1 -1 -1
spect to Ax, Ay. Therefore, it follows that w(xyx 'y )w =yXy ‘X ~. But

immduction on the length of w shows that this is impossible. Thus B is a non-
mnvertible link. The same argument implies that there is not an orientation-
preserving involution of 83 which induces an involution in each component of B

aind which keeps lixed exactly two points of B.
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At this point, it may be useful to remark there is a possibility of
existence of a knot N such that there is no orientation-preserving involu-
tion of $> which induces an involution on N. One of these possible

knots seems to be 8;, (see 41 and [19]).

$3. Genecralized surgery on links

In this section we will define modifications of the projection of a link
L that generalize the modifications W;, W, introduced earlier and also
the ones defined in [10]. These modifications have the effect of exhibiting
I: as a manifold which is obtained by doing generalized surgery on a link
in 83, that is, removing n disjoint solid tori from s® and replacing
each torus with a special ‘‘graph-manifold’’ which is bounded by a torus.
The advantage of this is that if a link has property P, then it will be
shown that a counterexample to the Poincare Conjecture cannot be ob-
tained by doing generalized surgery on it (Theorem 4). This fact will
allow us to establish Conjecture 1 for a large set of knots (see Section 4).

Let R be a finite tree with a distinguished vertex v(R) (the origin
of R). The tree is to be valued as follows: each vertex of R is labeled
either with a hyphen, or with an arbitrary integer, in such a way that each
vertex labeled with a hyphen belong to exactly one edge, and the origin
v(R) is always labeled with an integer. Each edge of R is labeled with
a pair of coprime integers (a,f3) where 0< f8<a. Wecall R a valued
free,

We will describe a procedure for assigning to each valued tree R a
manifold W(R), such that dW(R) is a torus with a fixed oriented fiber,
and moreover such that W(R) is a 2-fold cyclic covering of a 3-ball B,
which is branched over a system of curves L(R) such that JL(R) is the
set la,b,c,d! of Figure 8. To do this, we need some definitions.

Let M(s,m) be a manifold obtained as follows. Let M be the
sl-bundle over $2 which admits a section, and let H be a fiber of M.
Suppose that S2 and H have a fixed orientation. We remove m + 2

fibered solid tori V, from M,i-~-1,0,1,---,m. Then, s? cuts (3Vi
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Fig. 8.

in a meridian curve m; of V; and we give to m; the orientation induced
by S2 _ int Vs . Let us take in avi a fiber hi’ with the orientation in-
herited from H. In order to obtain M(s, m) we now paste a solid torus

in such a way that its meridian curve is homologous to m; + shy, i= -1

m
The boundary of M(s,m) is U é?Vi, and m; , hi are fixed oriented
i=0

curves in dV,. M(s,m) is a 2-fold cyclic covering of B—int(B;U---UB_)
branched over the curves L(s,m) of Figure 9 (for further details on the
construction, see {18, Section 2 and Section 3}).

Let B be the ball of Figure 8. We define an autohomeomorphism t
of 0B as the composition of a rotation, of angle /2 about the axis E
which transforms a to d, and a symmetry with respect to the equatorial
plane (see Figure 8). We define an autohomeomorphism v of aB as
follows. Let D be a disc in aB which contains in its interior the

points ¢, d and is disjoint from a, b (see Figure 8). Then, v|D is
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Fig., 9,

defined to be a “‘twist,’”’ holding D fixed, in the direction that is indi-
cated in Figure 8, in order to move ¢ to d. Now v is extended by the
identity map outside D.

Now let a,3 be two coprime integers. If a/f3 is the continued

fraction

we define an autohomeomorphism g(a,3) of dB as the composition
gla, B) = vMtv™t .- tv] tvi, where v° is the identity map. Let fa, B) =
g(a,B)t. Extend the homeomorphisms t,v to B. Then, g(a,f3) and
f(a, B) admit an extension to B, which we denote with the same symbols
e(@, B), f(a, B).

We are now ready to define W(R) and L(R) by induction on the num-

ber n of vertices of R which are labeled with an integer.
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Let v(R) be labeled with the integer s. Let us suppose also that
v(R) belongs to m edges ty,osty and that t. is labeled with (a;,8;).
Let u; denote another vertex of £ and assume that u,, where 1<i<r,
is labeled with a hyphen and that u;, where r+ 1< j<m, is labeled
with an integer. Then, u;, Tt 1<j<m, is the “beginning’’ of a valued
tree Rj A

Let v(RJ-) =u;. Note that the number of vertices of Rj which are
labeled with an integer is < n. W(R) is defined inductively, pasting the
r solid torus Vi, -, V. and the m—r manifolds W(R]-), r+1<j<m,
to M(s,m) in such a way that a meridian curve of V, is homologous to
a;m; + ‘Bihi , and the oriented fiber, fixed in QW(RJ-), is homologous to
a;m; + ‘thj' Note that in JW(R) = aVO, the oriented fiber hy remains
fixed. Then L(R) is obtained replacing f(a; , B (LG, 0)NB;), where
1<i<r, by L(s,0) N B; and replacing g(aj ,Bj) L(RJ-), where
r+1<j<m, by L(s,0) N Bj (see Figure 9). As an illustration of this
process see the example of Figure 10.

Let L be a link in S3 having m components Ny, N We will
say that a 3-manifold M is obtained by doing general surgery m (imes
on L if M is obtained by removing from s3 a regular neighborhood
U(Ni) of N, 1<i<m, and replacing it with W(Ri), where R; is some
valued tree, by pasting IW(R;) to 9(S*— U(N)).

Let L be a link in S and let us suppose that there is a ball B in g7
such that J(BNL) is the set {a,b,c,d} (see Figure 8)and BN L is a
system of curves g(a, B)L(R), where R is an arbitrary valued tree and
a, 3 are an arbitrary pair of coprime integers. We will say that has made
a general modification on L, if we replace B N L for the pair of curves
C,, C, of Figure 8. Let m be the minimum number of general modifica-
tions which have to be applied to L in order to change L into the
trivial knot. It is clear that L has been obtained by doing general
surgery on a strongly-invertible link in S3 of m components.

The following theorem is proved in the same way as Theorem 1:
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4 1
3,1 (2,1)
1 »(R)
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R 3,1 Ry G,1)
<2 -
Fig. 10a. Fig. 10b.

Fig. 10c. Fig. 10d.

THEOREM 3. Every manifold that is obtained by doing general surgery on

a strongly-invertible link is a 2-fold cyclic branched covering of 5,
The following theorem indicates a useful application of general surgery.

THEOREM 4. If M is a simply-connected 3-manifold that is obtained by

doing general surgery on a link L with property P, then M - s3.
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In order to prove Theorem 4 we first need the following Lemma:
LEMMA 1. Every homotopy 3-ball that lies in a graph-manifold is a 3-ball.

We defer the proof of this lemma until Section 5.

Proof of Theorem 4. We are going to demonstrate the theorem by induction
on the number n of graph-manifolds distinct from a solid torus which are
introduced by surgery. If n = 0, there is nothing to prove, thus let n> 0.
Let L, be acomponent of L such that a regular neighborhood, U(L,),
of L, has been replaced by a graph-manifold W(R) which is not a solid
torus. If (M) =1, then aU(Ll) bounds in M a homotopy solid torus
([1] and [8; Lemma 5.1]). If W(R) were a homotopy solid torus, it would
be a solid torus (by Lemma 1), hence M— int W(R) is a homotopy solid
torus. Then, m(M—int W(R)) is an infinite cyclic group with one generator
which is represented by a simple curve C in a(M—int W(R)). We paste a
solid torus to M—int W(R) in such a way that C is a meridian curve of
it. Thus we have built a manifold M’, with #(M") = 1, which is obtained
from S> by doing surgery on the link L, and replacing n—1 components
of . by n—1 graph-manifolds which are not solid tori. By the induction
hypothesis, M’= s and thus M—int W(R) is a solid torus. Therefore,
M is a graph-manifold. Making use of the result of Lemma 1 we conclude

that Theorem 4 is true. O

With the purpose of justifying the definitions of general modifications
and general surgery, we make the following remarks. Let K be a non-
trivial knot in S3. If we wish to check Conjecture 1 for K, we can, for
instance, apply m modifications of type W, in order to change K into the
trivial knot. Then, K is a manifold that is obtained by doing surgery on
a strongly invertible link in $3 of m components. By doing this in all
possible ways, we obtain a family LK) of links in $? such that K
can be exhibited as a manifold obtained by doing surgery on an arbitrary

member of f(K). Let m(K) be the minimal number of modifications of
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type W, which we have to apply to K in order to change K into the
trivial knot. We define g’(K), m’(K), in the same way as £(K) and
m(K), but replacing modifications of type W, for general modifications.
Thus K can be exhibited as a manifold obtained doing general surgery
on an arbitrary member of £ (K).

As a consequence of Theorem 4, if a member of S‘T(K) has property P,
then zr(f() £ 1. On the one hand m’(K) < m(K) and this makes it easier
to check Conjecture 1 for K in many cases, especially when m’(K) = 1,
because property P has been intensively studied for knots. On the other
hand, £(K)C S‘f'(K) and this increases our possibilities of finding a link
with property P such that K is obtained by doing general surgery on it.

It could happen that m’(K) = 1, for every non-trivial knot K. If this
was so, then every 2-fold cyclic covering branched over a knot of Ss,
would be obtained by doing general surgery on a strongly-invertible knot
of S3. Then, Conjecture 1 would be equivalent to the conjecture that

every strongly-invertible knot has property P.

§4. Applications

If one seeks a counterexample to the Poincare Conjecture among the
2-fold branched coverings of Ss, it is natural to examine covering spaces
which are branched over knots which share deep properties with the
trivial knot. One such property is that the trivial knot has Alexander poly-
nomial A(t) = 1. Note that if a knot N has Alexander polynomial A(t)=1
then N is a homology 3-sphere.

1. Kinoshita-Terasaka knots

Let us consider the knots of Kinoshita-Terasaka {11, p. 149] k(p,2n)
(k(3, 6) is illustrated in Figure 11a or 11b). All of them have Alexander
polynomial A(t) - 1. Note that k(3,6) can be obtained from the link of
Figure 1lc by substituting B; for Ci(i=1,2,3). Thus [18] k(3,6) is
the graph-manifold that is represented (in Waldhausen’s notation) by the
graph of Figure 12, where p=3, n= 2. In general, for k(p,2n), lz(p,2n)
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Fig. 1la, Fig. 11b,

1 1
#,1) (212,1) #>1)
(4,0) (A5
(9,9,-1) % oo > 4(0,0,-1)
(r1,7) G
L 4

Fig. 12.
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is the graph-manifold represented by the graph of Figure 12. Thus, by
Lemma 1, k(p,2n) cannot give a counterexample to the Poincaré Conjec-

ture.

2. Conway’s 11-crossing knot

Let L be the knot, with Alexander polynomial A(t) = 1, of Figure
13a, which was discovered by J. Conway in his enumeration of the non-
alternating 11-crossing knots [3] (see also [20, p. 615]).

The trivial knot T can be obtained by doing one general modification
in L (see Figure 13a,b). The 2-fold cyclic covering B(resp C) of the
ball B(resp C) branched over B N L(resp G ﬂL) is a solid torus.
Then, L can be obtained by removing C from T s3 and sewing it
back differently. The position of the ball C with respect to the trivial
knot T is shown in Figure 14a. Then, C isa regular neighborhood of
the square knot (Figure 14b). Thus, I: can be obtained by doing surgery
on the square knot, hence rr(f,) # 1, because a composite knot has

property P ({1], [8]).

Fig., 13a. Fig. 13b.

R

Fig. 144, [Figg. 14b,
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Fig. 15a. Fig. 15b. Fig. 15c.

3. The 3-braid knots (0201_1)(0102)6m, m>1

In [2] is is proved by Birman and Hilden that if Conjecture 1 is true
for the knots (0201_1)(0102)6m, m > 1 then Conjecture 1 is true for every
3-braid knot. We prove now that Conjecture 1 is true for the knots
(0201_1)(01 az)ﬁm, m > 1. For the sake of brevity, let L. be the knot
(a’.)zc:ri’l)(alcr2)12 of Figure 15a,b. The trivial knot T can be obtained
by doing one general modification in L (see Figure 15b,c). The 2-fold
cyclic covering é(resp. é) of the ball B(resp. C) branched over
B N L{resp. CMNL) is a solid torus. The position of the ball C with
respect to the trivial knot T is shown in Figure 16a. Then, C isa
regular neighborhood of the twist knot T, (Figure 16b). Hence I: can
be obtained by doing surgery on the twist knot T3, hence 77(]:) £1
because a twist knot has property P ([1’], 8h.

A similar argument applies to the case where m is arbitrary. In
general, the 2-fold cyclic covering branched over the 3-braid knot

(020;1)(0102)6"1 can be obtained by surgery on the twist knot T, ;.
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4. Generalized doubled knots

Let L be the knot of Figure 17a. L is a strongly-invertible knot
because the symmetry u with respect to the axis E leaves L invariant,
Let p: 53 5 53 be the 2-fold cyclic branched covering induced by u.
Then, p(L) is the path C of Figure 17b. As a composite knot has
property P ([1], [8]) then Conjecture 1 is true for the family of links of
Figure 17c, where R is an arbitrary valued tree and where a,B are an
arbitrary pair of coprime integers. As the same argument can be applied
to an arbitrary strongly-invertible composite knot, we obtain in particular,
that Conjecture 1 is true for every doubled knot (a fact proved by alge-
braic methods by Giffen [7]).

The same method can be applied to an arbitrary strongly-invertible

link with property P (examples of these can be found in [1], [8] and [23]).

5. The idea illustrated in the following example may be useful. Let N
be the knot of Figure 18 and let us consider a plane P with cuts N in
the set la,b,c,dl. Thus P divides $3 into two balls A, B. The 2-fold
cyclic covering ;\(resp. é) of A(resp. B), branched over A N
(tesp. BMNN) is the complement of a regular neighborhood of a non-trivial
knot in S° (see Section 4.4.). Then, N can be obtained by pasting 8;\
to JB. According to [1] and [8; Lemma 5.1] n(N) £ 1.

X2

Fig. 18,
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§5. Demonstration of Lemma 1*

Recall that the only simply connected Seifert manifold is s3 [221.

On the one hand, every graph-manifold with boundary is a submanifold
of a graph-manifold without boundary. On the other hand, every graph-
manifold without boundary is [26, Satz 6.3] a connected sum of lens-
spaces and reduced graph-manifolds (‘‘Reduzierte Graphenmannigfaltig-
keiten,”” see [26, 6.2]). Then, according to [9] and [26, Satz 7.1}, Lemma 1
will be proved if we can show that a simply-connected, reduced, closed
graph-manifold is s3,

A reduced graph-manifold is either defined by a graph A(M) (see
[26; 9]), or is a torus-bundle over S!, or is a Seifert manifold over g
with three exceptional fibers. Thus, according to [9], it is sufficient to
prove Lemma 1 for closed, reduced graph-manifolds M defined by a graph
AM). All of them [18; 7.5] are 2-fold cyclic coverings branched over a
3-sphere with g handles. If the graph A(M) is not a tree, or if any of
the vertices of A(M) are valued with a triple (gj,O,sj), g > 0, then
g > 0, hence H;(M)# 0. If the graph A(M) is a tree with its vertices
valued with triples (gj,O,sj), g <0, then M is a 2-fold cyclic cover-
ing branched over a link L of g3 [18; 7.3]. This link L has more than
one component if g; < 0 for any j [18; §3]. In this case, we have
H,(M) £ 0. Then, let M be represented by a tree A(M) whose vertices
are valued with triples (0,0,s;). For [26, 9.2.3., 9.2.4.a), b) and c)] the
vertices of A(M) either are of order > 3, or are valued with a hyphen
but there is always a vertex of order > 3. We are going to prove Lemma 1,
for those manifolds, by induction on the number m of vertices of order
>3. If m=1 M is a Seifert manifold and there is nothing to prove.
Assume that m > 1. Then, there is a torus in M that splits M into two
reduced graph-manifolds, M;, M,, corresponding to the graphs A(M,),
A(M,) respectively. In order to build A(M;), A(M,) itis sufficient to

In this section we will follow the notation of Waldhausen in [26].
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remove from A(M) an edge which joins two vertices of order >3 and to
value these vertices again with (0,1,-). Then, AM;),i=1,2, has at
least one vertex of order > 2, valued with (0,1, -).

According to [1], [8; Lemma 5.11, if #(M) = 1, then either M; or M,
is a homotopy solid torus. We may assume that M; is a homotopy solid
torus. Then, M; may be considered as a submanifold of either a Seifert
manifold with three exceptional fibers, or a graph-manifold that is repre-
sented by a graph with n < m vertices of order > 3. Thus, by the induc-
tion hypothesis and according to [9; 2.2], M, is a solid torus. But then,
[26; Satz, 9.4] A(M,) is a graph which has exactly one vertex of order

zero, valued with (0,1, —). This is a contradiction, hence #(M)#£ 1.0

Therefore, a simply connected graph-manifold is 2
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